OPERATING SYSTEMS

Semester	Course Code	Course Title	Hours	Credits
IV	C5	OPERATING SYSTEMS	60	2

Objectives:

This course aims to introduce the structure and organization of a file system. It emphasizes various functions of an operating system like memory management, process management, device management, etc.

Course Learning Outcomes:

Upon successful completion of the course, a student will be able to:

- 1. Know Computer system resources and the role of operating system in resource management with algorithms
- 2. Understand Operating System Architectural design and its services.
- 3. Gain knowledge of various types of operating systems including Unix and Android.
- 4. Understand various process management concepts including scheduling, synchronization, and deadlocks.
- 5. Have a basic knowledge about multithreading.
- 6. Comprehend different approaches for memory management.
- Understand and identify potential threats to operating systems and the security features design to guard against them.
- 8. Specify objectives of modern operating systems and describe how operating systems have evolved over time.
- 9. Describe the functions of a contemporary operating system

UNIT-I

What is Operating System? History and Evolution of OS, Basic OS functions, Resource Abstraction, Types of Operating Systems– Multiprogramming Systems, Batch Systems, Time Sharing Systems; Operating Systems for Personal Computers, Workstations and Hand-held Devices, Process Control & Real time Systems.

UNIT-II

Processor and User Modes, Kernels, System Calls and System Programs, System View of the Process and Resources, Process Abstraction, Process Hierarchy, Threads, Threading Issues, Thread Libraries; Process Scheduling, Non-Preemptive and Preemptive Scheduling Algorithms.

UNIT III

Process Management: Deadlock, Deadlock Characterization, Necessary and Sufficient Conditions for Deadlock, Deadlock Handling Approaches: Deadlock Prevention, Deadlock Avoidance and Deadlock Detection and Recovery.

Concurrent and Dependent Processes, Critical Section, Semaphores, Methods for Inter-process Communication; Process Synchronization, Classical Process Synchronization Problems: Producer-Consumer, Reader-Writer.

UNIT IV

Memory Management: Physical and Virtual Address Space; Memory Allocation Strategies—Fixed and -Variable Partitions, Paging, Segmentation, Virtual Memory.

UNIT V

File and I/O Management, OS security: Directory Structure, File Operations, File Allocation Methods, Device Management, Pipes, Buffer, Shared Memory, Security Policy Mechanism, Protection, Authentication and Internal Access Authorization

REFERENCE BOOKS:

- Operating System Principles by Abraham Silberschatz, Peter Baer Galvin and Greg Gagne (7thEdition) Wiley India Edition.
- 2. Operating Systems: Internals and Design Principles by Stallings (Pearson)

PRACTICALS:

- 1. Write a program to implement Round Robin CPU Scheduling algorithm
- 2. Simulate SJF CPU Scheduling algorithm
- 3. Write a program the FCFS CPU Scheduling algorithm
- 4. Write a program to Priority CPU Scheduling algorithm
- 5. Simulate Sequential file allocation strategies
- 6. Simulate Indexed file allocation strategies
- 7. Simulate Linked file allocation strategies
- 8. Simulate MVT and MFT memory management techniques
- 9. Simulate Single level directory File organization techniques
- 10. Simulate Two level File organization techniques
- 11. Simulate Hierarchical File organization techniques
- 12. Write a program for Bankers Algorithm for Dead Lock Avoidance
- 13. Implement Bankers Algorithm Dead Lock Prevention.
- 14. Simulate all Page replacement algorithms.
 - a) FIFO
 - b) LRU
 - c) LFU
- 15. Simulate Paging Techniques of memory management